ISES Solar Charging Station

Concept Generation and Selection

Ze Chen, Tyler Faulkner, Alexa Kearns, Yaqoub Molany, Thomas Penner

October 30, 2013

Overview

- Introduction
- Concept Generation
- Concept Selection
- Gantt Chart
- Conclusion

Introduction

- Sponsor is Dr. Thomas Acker
- Design a solar charging station that can charge small electronic devices.
- Two main subsections to the solar charging station:
 - Control System
 - Display System

Control System 1

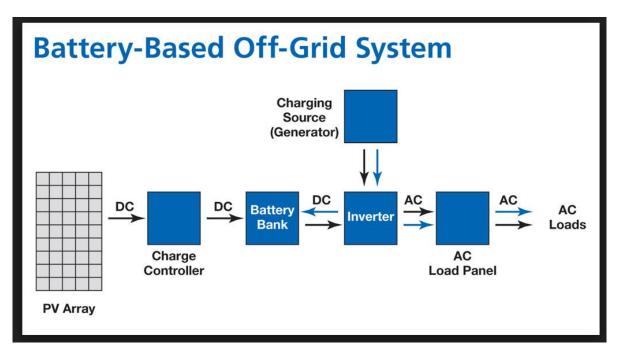


Figure provided by Home Power

Advantages

- Least expensive option
- Fewest components needed

Disadvantages

- Energy losses from batteries not in operation
- Battery replacement over time

Control System 2

Grid tie control system

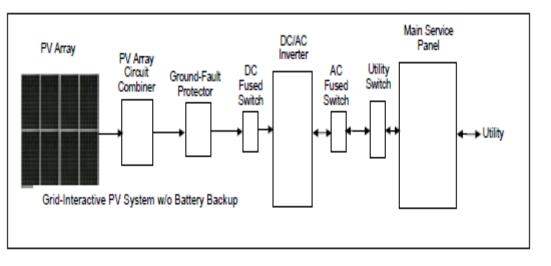
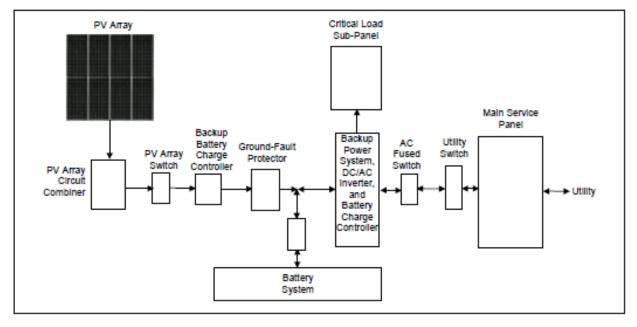


Figure provided by Endecon Engineering


Advantages

- Can be used anytime during the day
- Extra energy goes into the grid to save money

Disadvantages

- Does not work at night during power failure
- Does not save money at night

Control System 3

Grid tie with battery backup control system

Figure provided by Endecon Engineering

Advantages

Can still be used during a power outage

Disadvantages

- Complicated to get everything to work properly
- Battery replacement
- The most expensive option

Display System 1

Pre-Programmed Display Advantages

- Variety of interactive displays
- Most appealing display

Disadvantages

• Price

GEO Chorus PV

Figure provided by GEO

Display System 2

Team Programmed Display

• Code is written by team to display power measurements Basic power display

Advantages

Cheapest display solution

Disadvantages

- Requires time to program
- Display is limited to simplistic designs

Figure provided by HVG Engineering

Display System 3

Tablet Display

• Data is transmitted wirelessly to the tablet

Advantages

Complete customization

Disadvantages

- Specialized application programing
- Expensive

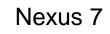


Figure provided by Google

Design Criteria

- Cost- How expensive the system is
- Efficiency- Power savings
- Simplicity- How easy the system is to build
- Reliability- Operates under various circumstances
- Environmentally Friendly- how the design impacts the environment
- Customization- The various features of the display
- Man Hours- The amount of time required
- Adaptability- How compatible the system is

Decision Matrix

Decision matrix for solar control systems

Decision Criteria	Decision Criteria Weights	Grid Only	Battery Only	Grid with Battery Backup			
Cost	0.10	3	4	2			
Efficiency	0.30	5	3	4			
Simplicity	0.10	3	4	2			
Reliability	0.40	5	3				
Environmentally Friendly	0.10	4	2	2			
To	tal	4.5	3.4				

Decision Matrix

Decision matrix for the display options

Decision Criteria	Decision Criteria Weights	Pre-Programmed	Team Programmed	Tablet
Cost	0.05	3	4	3
Reliability	0.40	4	3	2
Customization	0.15	4	5	2
Man Hours	0.10	5	2	2
Adaptability	0.30	4	4	1
То	tal	4.05	3.55	1.75

Gantt Chart Update

Project Progress

	ANTT project		- (')	2013	Dem	vables Repor	ntation		Engineering Analysis P Project proposal Report						
	Name	Begin date	End date	Week 4		Week 42	Week 43	Week 44	Week 45	Week 46	Week 47	Week 48	Week 49	Week 50 12/8/13	Week 51
)	Identification of Specifications	9/30/13	10/8/13		10/0/10	TOP TOP TO	10120110	10121110	1110110	THIO IS	1.111110	1112 11 10	12/11/10	1210/10	12/10/10
,	perliminary Design	10/15/13	10/29/13	and a											
į	Create AutoCAD	10/30/13	10/31/13	0000				- Č.							
	Student Design Survey	11/1/13	11/11/13	200				Ľ	_	<u>_</u>					
•	Test Solar Panels	11/1/13	11/14/13	1000											
	Secondary Design	11/12/13	11/18/13	0.00							1				
	Create AutoCAD	11/19/13	11/21/13	Sec.							Č.				
,	Final Student Design Survey	11/22/13	11/28/13	1000							Ľ				
2	Solar Analysis	11/15/13	12/12/13	1000						i					
2	Prepare submission for NAU	12/2/13	12/9/13	1000											
9	DeriverablesPresentation	10/9/13	10/9/13	1000	•										
2	Derivables Report	10/9/13	10/9/13	200	•										
)	Engineering Analysis Presen	11/20/13	11/20/13	1000							•				
2	Engineering Analysis Report	11/20/13	11/20/13	222							٠				
2	Final Presentation	12/4/13	12/4/13	Sec.									•		
×	Project proposal Report	12/4/13	12/4/13	100									٠		

Conclusion

The best overall system includes:

- A pre-programmed display is the best system for displaying power readings because of the efficient technology and competitive pricing.
- A grid tie control system is the optimal choice because it saves money and is the most reliable.

References

[1] "A Guide to Photovoltaic (PV) System Design and Installation", Endecon Engineering, <u>http://www.energy.ca.gov/reports/2001-09-04_500-01-</u> 020.PDF, October 25, 2013.

[2] Sanchez, J., "Choosing a Battery-Based Inverter", Home Power, <u>www.homepower.com</u>, October 25, 2013.

[3] "Green Energy Options", <u>http://www.greenenergyoptions.co.uk/</u>, Octobor 25, 2013.

[4] "Measurement and Control", Omega,

http://www.omega.com/subsection/current-voltage-meters.html, October 26, 2013.

[5] "Nexus 7", Google, <u>www.google.com/nexus</u>, October 26, 2013.

Questions?